
FolderGlance Scripting
Guide

© 2011 Yellow Lemon Software, all rights reserved.

This guide covers FolderGlance 3.0 and later.
Last Updated: February 23. 2011.

1. A word of warning	
 3
Knowledge required	
 3

2. Where to place scripts	
 4

3. Types of scripts	
 4

4. Sample scripts	
 4

5. Naming conventions	
 4

6. User interface	
 6

7. Script parameters	
 6

8. Script output	
 7

9. Context Menu Interface (CMI) scripts	
 7

CMI script output format	
 8

10.Script lifetime	
 9

11.Debugging scripts	
 9

12.Improvements or suggestions?	
 10

FolderGlance Users Guide! Page 2 of 10

1. A word of warning
FolderGlance Scripts provides a powerful way of extending the functionality of Folder-
Glance. However – as they say – with great power comes great responsibility. Scripting is
not for the faint of heart, and there are many risks you need to be aware of before you start
delving into scripts. Scripts can do anything, including deleting files or folders, overwriting
them, or otherwise corrupt them. Code wisely, and this wonʼt happen. Further, be careful
with what you do with the input your scripts get. As an example, consider a Python script
that simply does the following:

#!/usr/bin/env python
import os, sys
os.system("echo "+sys.argv[1])

All this script does is run the shellʼs built-in “echo” command, printing its value. Seemingly
innocous, right? No. This script is very dangerous. Letʼs say you have a file named as fol-
lows (without the quotes): “Dangerous; echo This could be dangerous”
If FolderGlance were to run the above script, the scriptʼs output would not be just the path
to the file. Instead, due to the semantics of the “os.system()” call and the shell, it would ac-
tually execute part of the fileʼs filename! The scripts output would be something like the fol-
lowing:

/Users/daniels/Dangerous
This could be dangerous

Note how the semi-colon went missing, along with the tail end of the filename. Needless to
say, if the name of the file or folder contained “rm -rf /*” instead of the aforementioned echo
command, you would suddenly find yourself without any files on your harddrive.

FolderGlance does not attempt to sanitize input to scripts – that is the scriptʼs job. So be
careful with what you do within your scripts; seemingly safe calls may well turn out to be
unsafe. Yellow Lemon Software takes no responsibility for damage caused to your Mac
through the use of FolderGlance or any scripts FolderGlance executes.

With these words of warning in place, please read on to discover how useful scripts can be
and how to write them for use with FolderGlance.

1.1. Knowledge required
To successfully write scripts for use with FolderGlance, you should have some program-
ming experience and be familiar with Terminal. I can not provide assistance with program-
ming scripts, although I will help you with specific questions regarding the interface be-
tween FolderGlance and your script.

FolderGlance Users Guide! Page 3 of 10

2. Where to place scripts
FolderGlance locates its scripts in the FolderGlance Scripts folder. The location of this
folder defaults to ~/Library/Application Support/FolderGlance/Scripts/, but can be config-
ured in the Custom Folders section of FolderGlanceʼs preference pane. Any scripts to be
executed by FolderGlance must be placed in the folder configured here. Note that when
you update FolderGlance, the installer will create a backup of the existing scripts folder
and overwrite any scripts that ship with FolderGlance with new versions.

3. Types of scripts
Scripts to be executed by FolderGlance must be either marked as executable or have an
executable placed in an application bundle. Symbolic links or aliases to executables or
application bundles also works. Assuming you have written a script called “my-script.py,”
you can mark the script as executable by executing the following command in Terminal:
chmod a+x <path to script>/my-script.py

At this point, you should be able to execute the script:
cd <path to script>
./my-script.py

FolderGlance will never execute your script without any arguments. Scripts can be written
in any language, as long as you have an interpreter on your system that can execute the
script. You can also compile your own binaries from C/C++/Objective-C code (or whatever
language you prefer to code in) and use them as scripts.

4. Sample scripts
FolderGlance ships with a number of sample scripts. These scripts are located on the
FolderGlance disk image, in the “Sample scripts” folder. The sample scripts provided are:
File and folder
count (selection,
implicit).py

A simple script written in Python that simply counts the num-
ber of files, folders and symbolic links in the current selec-
tion. The script is executed implicitly when the context menu
is opened. This script is also installed by default when
FolderGlance is installed.

Disk Usage (selec-
tion, implicit)

This is a compiled executable. The source code is also pro-
vided. This script is installed by default when FolderGlance is
installed.

Sample dynamic
script (selection,
cm-interface).py

This script demonstrates how you can build your own hierar-
chical menu structure. The script is written in Python. This
script is not installed by default, as it doesnʼt do anything
useful except to demontrate the mechanism for creating
menu hierarchies and responding to user selections.

5. Naming conventions
Scripts can be named in almost any way. A scriptʼs extension does not impact how it is
executed. Special keywords in a scriptʼs name impact the way it is executed. FolderGlance

FolderGlance Users Guide! Page 4 of 10

looks for keywords in between a set of parentheses in the scriptʼs name. These non-case
sensitive keywords are:

selection This script can only be applied to the current selection.

implicit This script is executed implicitly when the context menu is
opened. When combined with the selection keyword, this
script is passed the selection as its parameters, otherwise it
is passed the parent folder of the selection as its only pa-
rameter. Note: Providing “implicit” without “selection” is
currently unsupported.

cm-interface This script supports the FolderGlance Context Menu inter-
face. When this keyword is present, the script is executed
implicitly to generate a menu hierarchy presented by Folder-
Glance in the context menu. As with the implicit keyword,
this keyword can be combined with the selection keyword
to control whether it receives the current selection or the
parent directory of the current selection as its argument(s).
Note: Providing “cm-interface” without “selection” is
currently unsupported.

disabled This script will not appear in FolderGlanceʼs menus.

The keywords can be combined by separating each keyword with a comma, although
some combinations (or lack thereof) are currently unsupported. Some example script
names and their effect are shown below:

Sample script.py This script does not have any keywords in its name. When
executed, this script will receive a single parameter, which
will be the parent directory a user has browsed to. When
executed from the root context menu, this script will receive
the parent directory of the current selection. If the user
presses the Option-key, the script when executed from the
root context menu will receive the current selection as its pa-
rameters instead.

Sample script 2
(selection).py

This script will only appear in the root context menu, and it
will only receive the current selection as its parameter.
Pressing the Option-key while the context menu is open
does not change the parameters passed to the script.

Sample script 3
(implicit,
selection).py

When the user opens the context menu, this script will be
executed immediately. The final line of output from the script
will be used as the name of the menu item when the script is
done executing. It will receive the absolute paths of the cur-
rent selection as its arguments.

FolderGlance Users Guide! Page 5 of 10

Sample script 4
(implicit).py

This keyword combination is not yet supported. Intended
behaviour: As with Sample script 3, this script will execute
when the context menu is opened. It will receive the absolute
path to the parent directory of the selection or folder you
browse to, and the last line of output from the script will be
used as the menu itemʼs title in the context menu.

Sample script 5
(cm-interface,
selection).py

This script executes when the context menu is opened. Each
line of output describes a single menu item which can be se-
lected by the user, and must follow a specific format. See the
section on Context Menu Interface scripts. The script re-
ceives either --populate or --select <menu item id> as its first
argument(s), followed by the current selection.

Sample script 6
(cm-interface).py

This keyword combination is not yet supported. Intended
behaviour: This script behaves like Sample script 5, except
that its only argument is the parent directory of the current
selection.

Note that the keywords and their associated parentheses are filtered from the script name
when the name is shown in the context menu. Some of the combinations are not yet sup-
ported, and may produce unexpected behaviour.

6. User interface
All scripts, with the exception of scripts tagged with the cm-interface keyword, produce
a single menu item in FolderGlanceʼs root context menu. Scripts without the selection
or implicit keywords applied will also have a menu item appear at the top of the menu
in folders you browse to. The title of these menu items is the name of the script, sans any
keywords and their associated parentheses. When the user selects a menu item associ-
ated with your script, your script is executed with the relevant parameters; either the abso-
lute paths to the current selection, or a path to the directory being browsed to.

If the script is tagged with the implicit keyword, the script is executed immediately
when the context menu is opened. Once the script has finished executing, the menu itemʼs
title is changed to the last line of the scriptʼs output, and the menu item is disabled (since it
has already executed).

Note that currently, implicitly executed scripts that do not apply to the selection are only
executed for the parent folder of the current selection, and not for any folders you browse
to.

7. Script parameters
In general, all scripts receive absolute paths as their parameters. Scripts typically operate
on either the selection or a single directory. When operating on the selection, the parame-
ters will contain at least one path to either a file or folder, and possibly several such paths.
If a path points to a symbolic link or alias, the script will have to resolve the link or alias it-
self.

FolderGlance Users Guide! Page 6 of 10

The exception to this is for scripts with the cm-interface keyword in their names. See
the section on Context Menu Interface (CMI) scripts for more information on the parame-
ters to CMI scripts.

8. Script output
FolderGlance only uses output from scripts that are executed implicitly. To execute a script
implicitly, the scriptʼs name must contain either the implicit or cm-interface key-
word. Output should be sent to standard out.

Scripts with the implicit keyword must print at least one line to standard out. The last
line printed by a script will be used by FolderGlance to replace the title of the scriptʼs menu
item. While the script is executing, FolderGlance will show “Computing result…” as the title
of the scriptʼs menu item. The title is updated when the script finishes executing. For the
expected output from CMI scripts, see the section on CMI scripts.

9. Context Menu Interface (CMI) scripts
Context Menu Interface scripts are different from regular FolderGlance scripts in that they
are expected to produce a menu structure that FolderGlance will interpret and use to gen-
erate a menu hierarchy. An example of such a hierarchy is shown in the screenshot below.
The red highlight indicates menu items generated by the script.

1. The disk usage script is comput-
ing the size of the Applications folder

2. After a short while, the script is
done executing, and “Computing
result…” is replaced with the
scriptʼs output.

FolderGlance Users Guide! Page 7 of 10

To accomplish this, CMI scripts are executed twice: First, when the context menu is
opened, and second only if the user selects one of the menu items produced by the script.
The first time a CMI script is executed, the first argument to the script will be --populate.
On the second invocation, the scriptʼs two first arguments will be --select <menu-
item-id>. The remaining arguments (paths to files and folders) will remain constant in
between the two invocations. To summarize, a CMI script is conceptually invoked as fol-
lows:
./my-cmi-script --populate <path1 [path2 ...]>

or
./my-cmi-script --select <menu-item-id> <path1 [path2 ...]>

Since the script doesnʼt keep running in between the first and second invocation, it needs
to generate a set of menu item IDs based on the parameters it receives. These menu item
IDs are sent back to FolderGlance, along with the title of the menu item. When a user se-
lects an item generated by your script, it is invoked again, this time with --select
<menu-item-id> as its first two arguments. Note that the menu item IDs you generate
should be unique. If you supply two items that both use the same menu item ID, the be-
haviour of your script will probably not be as expected.

9.1. CMI script output format
The following specifies how your script should print its output in order to generate a menu
structure:
0
[tabs] <title> <tab> <unique-id> <tab> <flags>

FolderGlance Users Guide! Page 8 of 10

...more items following above specification, one per line
The first line of output should be the numeral zero (“0”), followed by a newline. This indi-
cates to FolderGlance which version of the output format is in use; currently only version 0
is defined. Every line following this line describes a single menu item. Each line is divided
into fields, using the tab-character to separate different fields.

The first field is the menu itemʼs title. The next field is the menu itemʼs unique ID, which
should be a 32-bit literal integer. The final item is the menu itemʼs flags. At present, flags
are not used by FolderGlance, and this field should be set to 0.

Before the first field, zero or more tab-characters may be present. These indicate the sub-
menu level that the item being described should appear at. It is an error to nest an item
more than one level below the level above it.

The following example demonstrates the output to generate six items, where the last items
appear in sub- and subsubmenus (similar to the screenshot shown above). For clarity, the
actual tab-character has been replaced with the text <TAB>. The scriptʼs command is also
shown with a dummy path:
./my-cmi-script --populate /
0
My first item<TAB>0<TAB>0
My second item<TAB>1<TAB>0
My first submenu<TAB>2<TAB>0
<TAB>My first submenu item<TAB>3<TAB>0
<TAB>Second submenu item, with submenu<TAB>4<TAB>0
<TAB><TAB>Subsubmenu item<TAB>5<TAB>0

If the user then selects for instance item four, “My first submenu item,” the script will be
executed again as follows:
./my-cmi-script --select 3 /

To learn more about writing a CMI script, look at the sample script called “Sample dynamic
script (selection, cm-interface).py”. This script is located on the FolderGlance disk image,
in the Sample scripts folder.

10.Script lifetime
Scripts executed by FolderGlance are not terminated. If you need to cancel a script, you
will need to use for instance Activity Monitor to locate the scriptʼs process and force quit it
from there.

In the future, scripts tagged with the implicit keyword will be terminated once the con-
text menu is closed, however no such restriction is in place for scripts executed in re-
sponse to the user selecting a scriptʼs menu item.

11.Debugging scripts
In general, it is best to debug your scripts by running them manually from Terminal and in-
spect their output. Only once you are confident that you get the results you expect, should
you place the script in FolderGlanceʼs scripts folder. There are two further techniques you

FolderGlance Users Guide! Page 9 of 10

can use for debugging: Start the Finder in Terminal, and enable FolderGlanceʼs debug
output.

To start the Finder in Terminal, execute the following command in Terminal (it is all one
line):
killall -9 Finder &&
/System/Library/CoreServices/Finder.app/Contents/MacOS/Finder

This will enable you to see information the script sends to standard error as they run. Al-
ternatively, you can terminate the Finder more gracefully as follows:
osascript -e 'tell app "Finder" to quit' &&
/System/Library/CoreServices/Finder.app/Contents/MacOS/Finder

You can also enable debug output in FolderGlance. Be warned that FolderGlance may
print a lot of information, and little of it is related to scripts. To enable debug output, open
System Preferences. Next, while holding the Option (Alt) key down, open the Folder-
Glance preference pane and release the Option key. Select the Advanced section, in
which there should now be a popup that allows you to turn logging off, send log output to
standard out (good for when you run the Finder from Terminal), or to a file. If you choose to
log to file, output will be stored in ~/Library/Logs/FolderGlance.log.

12.Improvements or suggestions?
If you have any suggestions on how this guide could be improved, or how FolderGlanceʼs
scripting support could be improved, please feel free to send me an e-mail with your com-
ments: yls@scsc.no.

FolderGlance Users Guide! Page 10 of 10

mailto:yls@kagi.com
mailto:yls@kagi.com

